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Metal complexes having two or more ligand molecules can 
exhibit synergistic effects in which the properties and behavior 
of one ligand show a dependence on the identity of the other ligand 
or ligands. Such phenomena were first observed in the kinetic 
behavior of square-planar and octahedral transition-metal com­
plexes and have been generally referred to as the trans effect (or 
in some cases the cis effect).2"4 Ground-state properties such as 
bond distances, vibrational frequencies, and NMR parameters 
also exhibit such phenomena. For the ground-state properties these 
phenomena are referred to as trans influence.2-4 These phenomena 
should also be manifest in thermodynamic properties, but little 
data has been available to establish this point.2"4 

The ideal measure of trans influence in thermodynamic prop­
erties would be provided by determination of gas-phase metal-
ligand bond strengths, the enthalpy for reaction 1. Reaction 1 

Scheme I 

AMB+ — AM+ + B, AH = Z)(AM+-B) (D 
has been written for the case of a unipositive, two-ligand, linear 
complex, one of the simplest systems which would be expected 
to exhibit trans influence. Relative bond strengths for two-ligand 
complexes are given by enthalpy differences for the ligand-ex-
change reactions 2 and 3. The enthalpy expressions for these 

AMA+ + B AMB+ + A 

AH2 = Z)(AM+-A) - Z)(AM+-B) 

AMB+ + B 3=t BMB+ + A 

AiZ3 = Z)(BM+-A) - Z)(BM+-B) 

(2) 

(3) 

reactions follow from the enthalpy expression for reaction 1. If 
there were no interaction between the two ligand sites on the metal, 
then the enthalpies for reactions 2 and 3 would be equal, AH2 = 
AH3 (Scheme I). If there is synergistic enhancement of the mixed 
species AMB+ compared to the pure species AMA+ and BMB+, 
then this can be measured as a deviation Q of the relative enthalpy 
for the mixed species, where Q = (AH3 - AH2)/2 = [Z)(AM+-B) 
+ Z)(BM+-A) - Z)(AM+-A) - Z)(BM+-B)]/2 (Scheme I). 

We wish to report measurements, using ion cyclotron resonance 
(ICR) techniques, of equilibria for the gas-phase reactions 2 and 
3 showing synergistic enhancement of the population of the mixed 
AMB+ species. The data were measured as part of studies of 
gas-phase ligand-binding energies to metal cations where the 
energies of the overall exchange of two B ligands for two A ligands 
(reaction 4) is used to obtain scales of relative ligand-binding 
energies. Studies have been completed for Ni+, Cu+, and Co+ 

with two ligands and are reported separately.5"7 

AMA+ + 2 B ^ BMB+ + 2A 

AH^ = Z)(M+-2A) - Z)(M+-2B) (4) 

(1) (a) Institute for Inorganic and Physical Chemistry, University of Bern, 
CH-3012 Bern, Switzerland, (b) Department of Chemistry, Cornell Univ­
ersity, Ithaca, NY 14853. (c) Central Research Department, Experimental 
Station, DuPont Company, Wilmington, DE 19898. 

(2) Huheey, J. E. "Inorganic Chemistry", 2nd ed.; Harper and Row: New 
York, 1978; pp 489-498. 
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Table I. Stabilization Energies for Inteigroup Two-Ligand 
Gas-Phase Transition-Metal Complexes Showing Synergistic 
Stabilization" 

AzV2 = AzV3 

ideal 
(no interaction) 

O 

LH2 

AM5 

synergistic 
(interaction 

M 

Co 
Co 
Co 
Co 
Ni 
Ni 
Ni 
Ni 
Cu 
Cu 

Co 
Co 
Co 
Co 
Ni 
Ni 
Cu 
Cu 
Cu 

Co 
Ni 
Ni 
Cu 

Ni 

Ni 

A6 

(A) <j-Base/7r-
EtOH 
Me2O 
M-PrOH 
Me2C=CH2 

MeCH=CH2 

Me2C=CH2 

Me2O 
CH2=C=CH2 

Me2C=CH2 

MeCH=CH2 

B6 

Base Complexes 
EtCH=CH2 

EtCH=CH2 

Me2C=CH2 

EtCHO 
Me2O 
M-PiOH 
EtCH=CH2 

MeOH 
M-PrCHO 
Me2O 

(B) a-Base/S-Base Complexes 
Me2O 
Me2S 
Et2O 
EtSH 
Me2S 
EtCOMe 
Me2CO 
f-BuCHO 
Et2CO 

MeSH 
Me2CO 
M-BuSH 
M-PrCHO 
Et2CO 
Me2S 
EtSH 
MeSH 
MeNCS 

Q c 

,AMB+ 

0.75 
0.86 
0.75 
0.72 
1.27 
1.18 
1.18 
1.11 
0.72 
1.16 

AMB+ 

0.27 
0.49 
0.23 
0.34 
0.53 
0.36 
0.75 
0.97 
0.30 

(C) a-Base/N-Base Complexes, AMB+ 

HCN 
n-PrCHO 
NH3 

HCN 

(D) S-Base/77 
C6H6Cl 

(E) N-Base/7 
EtNH2 

M-PrCHO 
HCN 
Et2CO 
M-PrCHO 

-Base Complex, 
EtSH 

r-Base Complex, 
C6H5CN 

0.20 
0.63 
0.51 
0.73 

AMB+ 

1.18 

AMB+ 

0.35 

Z)(M+-2B) -
£>(M+-2A) 

0.51 
0.59 
0.51 
0.54 
1.65 
0.44 
0.06 
0.81 
0.52 
1.46 

0.12 
0.07 
0.01 
0.09 
0.86 
0.83 
0.53 
0.73 
0.30 

0.56 
0.11 
0.54 
0.33 

0.35 

1.23 
a All data in kcal/mol. b B is always the stronger ligand and A 

the weaker ligand. c Q= [D(AM+-B) + Z)(BM+-A) - D(AM+-A) -
D(BM+-B)] /2 , see Scheme I. 

Instrumentation and procedures for these studies are described 
in detail elsewhere.5"9 Briefly, atomic metal cations are produced 
in the ICR cell by a pulsed YAG laser volatilization/ionization 
technique. In the presence of various organic molecules, the metal 
cations react to form metal-ligand complexes. At typical pressures 
of 3 X 10"6 torr, Ni+, Cu+, and Co+ form complexes with two 
ligand molecules. Equilibrium constants are obtained from the 
measured partial pressures of the neutral ligands and the observed 
abundances of ions as the ligand exchange reactions 2 and 3 
approach equilibrium. Equilibrium constants are converted to 
free energies by the relation AG = -RT In K. It is assumed that 
entropy changes are small and tend to cancel so that they may 
be neglected and the free energy values taken as enthalpies.10 

(5) Kappes, M. M.; Staley, R. H. J. Am. Chem. Soc, in press. 
(6) Jones, R. W.; Staley, R. H. J. Am. Chem. Soc, in press. 
(7) Jones, R. W.; Staley, R. H. J. Phys. Chem., in press. 
(8) Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc 1980, 102, 4144. 
(9) Jones, R. W.; Staley, R. H. J. Am. Chem. Soc. 1980, 102, 3794. 
(10) The enthalpies are corrected for the statistical factor arising because 

the mixed species can be formed in two ways as AMB+ or BMA+. Other 
symmetry number" and rotational entropy12 corrections are not made in this 
work since the geometries for the metal-ligand complexes are not known. The 
errors introduced should be small since these effects should tend to cancel for 
the two-ligand complexes studied. 
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Table II. Examples of Stabilization Energies, Q, for Intragroup 
Two-Ligand Gas-Phase Transition-Metal Complexes Showing Ideal 
(Statistical) Behavior" 

a donor 

M 

Co 
Co 
Co 
Ni 
Ni 
Ni 
Cu 
Cu 
Cu 
Cu 
Cu 
Cu 

Ni 
Ni 

Ni 
Ni 

A" 

(A) o-Ba; 
Me2O 
Me5CO 
«-PrCHO 
EtCO3Et 
MeCHO 
f-BuCHO 
EtBr 
EtCl 
EtCHO 
Et2CO 
MeNCO 
MeNO2 

B b 

se/a-Base Complexes, 
M-PrOH 
MeCOEt 
i'-PrOH 
Et2CO 
EtOH 
Me2CO 
/-PrCl 
CH2O 
M-BuOH 
M-PrCO2Et 
EtBr 
MeOH 

(B) 7r-Base/7r-Base Complexes. 
C6H5Cl 
C2H2 

(C) N-Ba; 
MeCN 
EtCN 

C6H6 

CH2=C=CH2 

Qc 

AMB+ 

0.01 
0.04 
0.02 

-0 .10 
0.09 

-0 .11 
0.03 
0.04 

-0.05 
0.02 
0.08 
0.10 

,AMB+ 

0.14 
0.14 

se/N-Base Complexes, AMB+ 

MeNH2 

Me3N 
0.07 
0.12 

£(M+-2B) -
£>(M+-2A) 

1.66 
1.33 
0.15 
2.30 
0.46 
1.39 
0.34 
0.53 
0.49 
0.67 
0.43 
0.01 

1.33 
0.19 

0.14 
1.20 

T acceptor 

a All data in kcal/mol. b B is always the stronger ligand and A 
the weaker ligand. c Q= [D(AM+-B) + Z)(BM+-A) - D(AM+-A) -
D(BM+-B)] /2, see Scheme I. The mean and standard deviation of 
the distribution of Q for 85 intragroup equilibria is Q = 0.01 ± 
0.09 kcal/mol. 

Results for a number of ligand pairs show synergistic stabili­
zation of the mixed species. Values of Q for these pairs are given 
in Table I along with the total enthalpy change for exchange of 
both ligands, Z>(M+-2B) - D(M+-IA). The observed values of 
Q do not correlate with the relative ligand-binding energies, 
Z>(M+-2L), or the ligand-binding energy difference for the ligand 
pair, Z>(M+-2B) - D(M+-2A). The molecules studied fall into 
four groups: (1) a bases (alkyl halides, alcohols, ethers, aldehydes, 
ketones, esters, isocyanates, and nitro compounds), (2) S bases 
(alkyl mercaptans and sulfides), (3) N bases (alkyl amines and 
cyanides), and (4) ir bases (olefins and aromatics). Complexes 
with both ligands from the same group show no special stability 
for the mixed AMB+ species. A few examples of the results for 
the intragroup complexes are given in Table II. Altogether 85 
intragroup ligand-pair complexes have been studied. The mean 
and_ standard deviation for the distribution of Q for these complexes 
is Q = 0.01 ± 0.09 kcal/mol. 

The £T-base/ir-base pairs show the largest stabilization, Q c* 
0.8, 1.2, and 0.9 kcal/mol for Co+, Ni+, and Cu+ complexes 
respectively (Table I). Smaller stabilizations are seen for a-
base/S-base, <r-base/N-base, S-base/ir-base, and N-base/ir-base 
complexes (Table I). 

The observation of synergistic stabilization of the mixed ligand 
complex for a-base/ir-base and other intergroup pairs constitutes 
a direct measurement of thermodynamic trans influence in the 
nearly ideal case of gas-phase two-ligand metal ion complexes. 
Empirical trans-influence orders predict2"4 ir bases > S bases =* 
N bases > a bases, consistent with the observed order in the present 
work. Theories of trans influence are based on the idea that with 
unlike trans ligands having differing degrees of IT bonding a 
synergistic enhancement is obtained from asymmetric distortion 
of the metal orbitals involved in bonding. For example, with a 
pure <r-donor/7T-acceptor ligand pair, the empty metal tr-orbital 
distorts toward the <r-donor ligand and an occupied metal d-orbital 
distorts toward the empty ligand 7r-acceptor orbital (structure I).2"4 

With like ligands on both sites, a symmetric structure results, 
giving no enhancement. Attempts at quantitative theoretical 
treatment of the effect have met with only very limited success.2"4 

(H) Benson, S. W. "Thermochemical Kinetics", 2nd ed.; Wiley-Intersci-
ence: New York, 1976. 

(12) Woodin, R. L.; Beauchamp, J. L. J. Am. Chem. Soc. 1978,100, 501. 

The quantitative thermochemical data provided by the present 
work for relatively simple systems should facilitate development 
of more exact theoretical models. Future ICR studies of bond-
dissociation energies for two-ligand complexes of Co+, Cu+, Ni+, 
and other metal cations can be expected to enlarge the data set 
available for examination of thermodynamic trans influence in 
the gas phase. 
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The synthesis and reactivity of transition-metal complexes which 
contain M-alkylidene ligands have attracted considerable interest, 
in part because these ligands may be key surface intermediates 
in Fischer-Tropsch reactions for the reductive polymerization of 
carbon monoxide. These surface alkylidene moieties are postu­
lated1 to be in bridging positions because few isolable dinuclear 
complexes with terminal alkylidene or carbene ligands are known;2 

the vast majority contain ^-alkylidene ligands. 
We reported recently the synthesis of reactive ^-alkylidene 

complexes by the thermal decomposition of /i-diazoalkane com­
plexes, which are generated by the addition of diazoalkanes to 
a metal-metal triple bond.3 Coordinatively saturated ^-alkylidene 
complexes can also be obtained from the addition of diazoalkanes 
to formal metal-metal double bonds.4"6 Here, we report the first 

(1) Brady, R. C; Pettit, R. / . Am. Chem. Soc. 1980, 102, 6181-6182. 
(2) Examples: Casey, C. P. Chem. Commun. 1970, 1220-1221. Casey, 

C. P.; Cyr, C. R. / . Organomet. Chem. 1973, 57, C69-C71. 
(3) (a) Messerle, L.; Curtis, M. D. J. Am. Chem. Soc. 1980, 102, 

7789-7791. (b) This transformation can also be affected photochemically: 
Messerle, L.; Curtis, M. D., unpublished results. 
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